Chip design of MFCC extraction for speech recognition
نویسندگان
چکیده
The mel frequency cepstral coefficient (MFCC) is one of the most important features required among various kinds of speech applications. In this paper, the first chip for speech features extraction based on MFCC algorithm is proposed. The chip is implemented as an intellectual property, which is suitable to be adopted in a speech recognition system on a chip. The computational complexity and memory requirement of MFCC algorithm are analyzed in detail and improved greatly. The hybrid table look-up scheme is presented to deal with the elementary function value in the MFCC algorithm. Fixed-point arithmetic is adopted to reduce the cost under the accuracy studies of finite word length effect. Finally, the area-efficient design is implemented successfully into the single Xilinx XC4062XL FPGA. r 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملبهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگیهای استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز
The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...
متن کاملMFCC and its applications in speaker recognition
Speech processing is emerged as one of the important application area of digital signal processing. Various fields for research in speech processing are speech recognition, speaker recognition, speech synthesis, speech coding etc. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. Feature extraction is the first step ...
متن کاملMFCC and Prosodic Feature Extraction Techniques:
In this paper our main aim to provide the difference between cepstral and non-cepstral feature extraction techniques. Here we try to cover-up most of the comparative features of Mel Frequency Cepstral Coefficient and prosodic features. In speaker recognition, there are two type of techniques are available for feature extraction: Short-term features i.e. Mel Frequency Cepstral Coefficient (MFCC)...
متن کاملA Comparative Study on Feature Extraction Technique for Isolated Word Speech Recognition
Digital Speech Signal Processing is the process of converting one type of speech signal representation to another type of representation so as to uncover various mathematical or practical properties of the speech signal and do appropriate processing to support in solving both fundamental and deep troubles of interest. Digital Speech Processing chain has two different main model They are Speech ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integration
دوره 32 شماره
صفحات -
تاریخ انتشار 2002